Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.467
Filtrar
1.
Sci Rep ; 14(1): 7944, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575598

RESUMO

In recent years, the presence and migration of PAEs in packaging materials and consumer products has become a serious concern. Based on this concern, the aim of our study is to determine the possible migration potential and speed of PAEs in benthic fish stored in vacuum packaging, as well as to monitor the storage time and type as well as polyethylene (PE) polymer detection.As a result of the analysis performed by µ-Raman spectroscopy, 1 microplastic (MP) of 6 µm in size was determined on the 30th day of storage in whiting fish muscle and the polymer type was found to be Polyethylene (PE) (low density polyethylene: LDPE). Depending on the storage time of the packaging used in the vacuum packaging process, it has been determined that its chemical composition is affected by temperature and different types of polymers are formed. 10 types of PAEs were identified in the packaging material and stored flesh fish: DIBP, DBP, DPENP, DHEXP, BBP, DEHP, DCHP, DNOP, DINP and DDP. While the most dominant PAEs in the packaging material were determined as DEHP, the most dominant PAEs in fish meat were recorded as BBP and the lowest as DMP. The findings provide a motivating model for monitoring the presence and migration of PAEs in foods, while filling an important gap in maintaining a safe food chain.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Animais , Dietilexilftalato/análise , Plásticos , Vácuo , Ácidos Ftálicos/química , Polietileno/análise , Polímeros , Dibutilftalato , Ésteres/análise , China
2.
Acta Biomater ; 179: 220-233, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554890

RESUMO

An effective treatment for the irregular partial-thickness cartilage defect in the early stages of osteoarthritis (OA) is lacking. Cartilage tissue engineering is effective for treating full-thickness cartilage defects with limited area. In this study, we designed an injectable multifunctional poly(lactic-co-glycolic acid) (PLGA) microsphere to repair partial-thickness cartilage defects. The microsphere was grafted with an E7 peptide after loading the microsphere with kartogenin (KGN) and modifying the outer layer through dopamine self-polymerization. The microsphere could adhere to the cartilage defect, recruit synovial mesenchymal stem cells (SMSCs) in situ, and stimulate their differentiation into chondrocytes after injection into the articular cavity. Through in vivo and in vitro experiments, we demonstrated the ability of multifunctional microspheres to adhere to cartilage matrix, recruit SMSCs, and promote their differentiation into cartilage. Following treatment, the cartilage surface of the model group with partial-thickness cartilage defect showed smooth recovery, and the glycosaminoglycan content remained normal; the untreated control group showed significant progression of OA. The microsphere, a framework for cartilage tissue engineering, promoted the expression of SMSCs involved in cartilage repair while adapting to cell migration and growth. Thus, for treating partial-thickness cartilage defects in OA, this innovative carrier system based on stem cell therapy can potentially improve therapeutic outcomes. STATEMENT OF SIGNIFICANCE: Mesenchymal stem cells (MSCs) therapy is effective in the repair of cartilage injury. However, because of the particularity of partial-thickness cartilage injury, it is difficult to recruit enough seed cells in situ, and there is a lack of suitable scaffolds for cell migration and growth. Here, we developed polydopamine surface-modified PLGA microspheres (PMS) containing KGN and E7 peptides. The adhesion ability of the microspheres is facilitated by the polydopamine layer wrapped in them; thus, the microspheres can adhere to the injured cartilage and recruit MSCs, thereby promoting their differentiation into chondrocytes and accomplishing cartilage repair. The multifunctional microspheres can be used as a safe and potential method to treat partial-thickness cartilage defects in OA.


Assuntos
Anilidas , Células-Tronco Mesenquimais , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Coelhos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Diferenciação Celular/efeitos dos fármacos , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Cartilagem Articular/patologia , Ácido Poliglicólico/química , Ácido Láctico/química , Injeções , Matriz Extracelular/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Engenharia Tecidual/métodos
3.
J Chem Inf Model ; 64(8): 3290-3301, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38497727

RESUMO

Exploring the global energy landscape of relatively large molecules at the quantum level is a challenging problem. In this work, we report the coupling of a nonredundant conformational space exploration method, namely, the robotics-inspired iterative global exploration and local optimization (IGLOO) algorithm, with the quantum-chemical density functional tight binding (DFTB) potential. The application of this fast and efficient computational approach to three close-sized molecules of the phthalate family (DBP, BBP, and DEHP) showed that they present different conformational landscapes. These differences have been rationalized by making use of descriptors based on distances and dihedral angles. Coulomb interactions, steric hindrance, and dispersive interactions have been found to drive the geometric properties. A strong correlation has been evidenced between the two dihedral angles describing the side-chain orientation of the phthalate molecules. Our approach identifies low-energy minima without prior knowledge of the potential energy surface, paving the way for future investigations into transition paths and states.


Assuntos
Algoritmos , Conformação Molecular , Ácidos Ftálicos , Ácidos Ftálicos/química , Termodinâmica , Processos Estocásticos , Teoria da Densidade Funcional , Modelos Moleculares
4.
Environ Sci Pollut Res Int ; 31(13): 20689-20697, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38393574

RESUMO

Poly(ethylene terephthalate) (PET) is a very valuable and beneficial material for industrial purposes, with various different applications. Due to the high annual production volume of over 50 million tons worldwide and the indiscriminate disposal by consumers, the polymers accumulate in the environment, causing negative effects on various ecosystems. Biodegradation via suitable enzymes represents a promising approach to combat the plastic waste issue so validated methods are required to measure the efficiency and efficacy of these enzymes. PETase and MHETase from Ideonella sakaiensis are suitable enzymes needed in combination to completely degrade PET into its environmentally friendly monomers. In this project, we compare and combine a previously described bulk absorbance measurement method with a newly established 1H NMR analysis method of the PET degradation products mono(2-hydroxyethyl) terephthalic acid, bis(2-hydroxyethyl) terephthalic acid and terephthalic acid. Both were optimized regarding different solvents, pH values and drying processes. The accuracy of the measurements can be confirmed with sensitivity limits of 2.5-5 µM for the absorption method and 5-10 µM for the 1H NMR analysis. The combination of the described methods therefore allows a quantitative analysis by using bulk absorption coupled with a qualitative analysis through 1H NMR. The methods established in our work can potentially contribute to the development of suitable recycling strategies of PET using recombinant enzymes.


Assuntos
Hidrolases , Ácidos Ftálicos , Hidrolases/química , Ecossistema , Espectroscopia de Prótons por Ressonância Magnética , Ácidos Ftálicos/química , Polietilenotereftalatos/química
5.
Chemosphere ; 346: 140571, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303388

RESUMO

This study investigates the mechanism behind the oxidation di-(2-ethylhexyl) phthalate (DEHP) in marine sediment by coupling sulfite using biochar prepared from sorghum distillery residue (SDRBC). The rationale for this investigation stems from the need to seek effective methods for DEHP-laden marine sediment remediation. The aim is to assess the feasibility of sulfite-based advanced oxidation processes for treating hazardous materials such as DEHP containing sediment. To this end, the sediment in question was treated with 2.5 × 10-5 M of sulfite and 1.7 g L-1 of SDRBC700 at acidic pH. Additionally, the study demonstrated that the combination of SDRBC/sulfite with a bacterial system enhances DEHP removal. Thermostilla bacteria were enriched, highlighting their role in sediment treatment. This study concludes that sulfite-associated sulfate radicals-driven carbon advanced oxidation process (SR-CAOP) offers sustainable sediment pretreatment through the SDRBC/sulfite-mediated microbial consortium, in which the SO3•- and 1O2 were responsible for DEHP degradation. SDRBC/sulfite offers an effective and environmentally friendly method for removing DEHP. Further, these results can be targeted at addressing industry problems related to sediment treatment.


Assuntos
Carvão Vegetal , Dietilexilftalato , Microbiota , Ácidos Ftálicos , Sorghum , Dietilexilftalato/metabolismo , Sorghum/metabolismo , Ácidos Ftálicos/química , Sedimentos Geológicos
6.
Environ Res ; 248: 118234, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272296

RESUMO

This investigation aimed to scrutinize the level of phthalate esters (PEs) in the landfill leachate of a coastal city in the north of the Persian Gulf and the sensitive ecosystem (soil and water) around it. Soil (two depths) and water samples were prepared from 5 stations in wet and dry seasons. The studied landfill leachate contained 114-303 µg/L of phthalates. The highest concentration of phthalates was related to bis (2-ethylhexyl) phthalate (3257 ng/g) in the wet season at surface soil (0-5 cm) in the landfill site, while the lowest one (6 ng/g) belonged to dimethyl phthalate at sub-surface soil at 700 m from the landfill in the dry season. A significant change in the level of Σ6PEs in the dry (303 µg/L) and wet (114 µg/L) seasons (P ≤ 0.05) was observed for water samples. The PE concentrations in wet times were higher in all soil depths than in dry times. With increasing depth, the content of phthalates decreased in all studied environments. A direct relationship was observed between the phthalates concentration and the pH value of leachate/water and soil. The PEs concentration was linked to electrical conductivity (leachate: R2 = 0.65, P < 0.01 and surface soil: R2 = 0.77, P < 0.05) and the soil organic content. The ecological risk of di-n-butyl phthalate, benzyl butyl phthalate, bis (2-ethylhexyl) phthalate, and di-n-octyl phthalate in the wet season was greater than one. The results showed that significant levels of phthalate esters are released from landfills to the surrounding environment, which requires adequate measures to maintain the health of the ecosystem and nearby residents.


Assuntos
Ácidos Ftálicos , Poluentes Químicos da Água , Água , Poluentes Químicos da Água/análise , Ésteres , Solo/química , Irã (Geográfico) , Ecossistema , Ácidos Ftálicos/química , Instalações de Eliminação de Resíduos
7.
Anal Methods ; 16(3): 420-426, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38165136

RESUMO

The efficient extraction of phthalic acid esters (PAEs) is challenging due to their extremely low concentration, complicated matrices and hydrophilicity. Herein, hollow microspheres, as an ideal coating, possess significant potential for solid-phase microextraction (SPME) due to their fascinating properties. In this study, multiwalled carbon nanotube hollow microspheres (MWCNT-HMs) were utilized as a fiber coating for the SPME of PAEs from tea beverages. MWCNT-HMs were obtained by dissolving the polystyrene (PS) cores with organic solvents. Interestingly, MWCNT-HMs well maintain the morphology of the MWCNTs@PS precursors. The layer-by-layer (LBL) assembly of MWCNTs on PS microsphere templates was achieved through electrostatic interactions. Six PAEs, di-ethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DOP), were selected as target analytes for assessing the efficiency of the coating for SPME. The stirring rate, sample solution pH and extraction time were optimized by using the Box-Behnken design. Under optimal working conditions, the proposed MWCNT-HMs/SPME was coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) to achieve high enrichment factors (118-2137), wide linearity (0.0004-10 µg L-1), low limits of detection (0.00011-0.0026 µg L-1) and acceptable recovery (80.2-108.5%) for the detection of PAEs. Therefore, the MWCNT-HM coated fibers are promising alternatives in the SPME method for the sensitive detection of PAEs at trace levels in tea beverages.


Assuntos
Nanotubos de Carbono , Ácidos Ftálicos , Microextração em Fase Sólida/métodos , Microesferas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem , Ácidos Ftálicos/análise , Ácidos Ftálicos/química , Bebidas/análise , Chá
8.
J Hazard Mater ; 464: 132965, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37979420

RESUMO

Poly(butylene adipate-co-terephthalate) (PBAT) is among the most widely applied synthetic polyesters that are utilized in the packaging and agricultural industries, but the accumulation of PBAT wastes has posed a great burden to ecosystems. Using renewable enzymes to decompose PBAT is an eco-friendly solution to tackle this problem. Recently, we demonstrated that cutinase is the most effective PBAT-degrading enzyme and that an engineered cutinase termed TfCut-DM could completely decompose PBAT film to terephthalate (TPA). Here, we report crystal structures of a variant of leaf compost cutinase in complex with soluble fragments of PBAT, including BTa and TaBTa. In the TaBTa complex, one TPA moiety was located at a polymer-binding site distal to the catalytic center that has never been experimentally validated. Intriguingly, the composition of the distal TPA-binding site shows higher diversity relative to the one proximal to the catalytic center in various cutinases. We thus modified the distal TPA-binding site of TfCut-DM and obtained variants that exhibit higher activity. Notably, the time needed to completely degrade the PBAT film to TPA was shortened to within 24 h by TfCut-DM Q132Y (5813 mol per mol protein). Taken together, the structural information regarding the substrate-binding behavior of PBAT-degrading enzymes could be useful guidance for direct enzyme engineering.


Assuntos
Ácidos Ftálicos , Polímeros , Polímeros/química , Ecossistema , Poliésteres/química , Ácidos Ftálicos/química
9.
Molecules ; 28(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005350

RESUMO

Phthalic acid esters (PAEs) are a class of chemicals widely used as plasticizers. These compounds, considered toxic, do not bond to the polymeric matrix of plastic and can, therefore, migrate into the surrounding environment, posing a risk to human health. The primary source of human exposure is food, which can become contaminated during cultivation, production, and packaging. Therefore, it is imperative to control and regulate this exposure. This review covers the analytical methods used for their determination in two economically significant products: olive oil and wine. Additionally, it provides a summary and analysis of information regarding the characteristics, toxicity, effects on human health, and current regulations pertaining to PAEs in food. Various approaches for the extraction, purification, and quantification of these analytes are highlighted. Solvent and sorbent-based extraction techniques are reviewed, as are the chromatographic separation and other methods currently applied in the analysis of PAEs in wines and olive oils. The analysis of these contaminants is challenging due to the complexities of the matrices and the widespread presence of PAEs in analytical laboratories, demanding the implementation of appropriate strategies.


Assuntos
Ácidos Ftálicos , Vinho , Humanos , Azeite de Oliva/análise , Vinho/análise , Ésteres/química , Ácidos Ftálicos/química
10.
Ecotoxicol Environ Saf ; 268: 115686, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976928

RESUMO

As one of the most important phthalates, di-isononyl phthalate (DINP) has been widely used as a common plasticizer in the food and personal care products sectors. In our previous study, we found that DINP can induce autophagy of ovarian granulosa cells; while the underlying mechanism is unclear. In the study, we showed that DINP exposure could induce autophagy of ovarian granulosa cells and KGN cells, accompanied with the increase in the mRNA and protein level of DDIT4. Furthermore, overexpression of DDIT4 were shown to induce autophagy of KGN cells; while knockdown of DDIT4 inhibited DINP-induced autophagy, implying that DDIT4 played an important role in DINP-induced autophagy of ovarian granulosa cells. There were three putative binding sites of transcription factor ATF4 in the promoter region of DDIT4 gene, suggesting that DDIT4 might be regulated by ATF4. Herein, we found that overexpression of ATF4 could upregulate the expression of DDIT4 in KGN cells, while knockdown of ATF4 inhibited its expression. Subsequently, ATF4 was identified to bind to the promoter region of DDIT4 gene and promote its transcription. The expression of ATF4 was also increased in the DINP-exposed granulosa cells, and ATF4 overexpression promoted autophagy of KGN cells; whereas knockdown of ATF4 alleviated DINP-induced upregulation of DDIT4 and autophagy of the cells. Taken together, DINP triggered autophagy of ovarian granulosa cells through activating ATF4/DDIT4 signals.


Assuntos
Regulação da Expressão Gênica , Ácidos Ftálicos , Feminino , Humanos , Ácidos Ftálicos/química , Autofagia/genética , Células da Granulosa
11.
Biotechnol J ; 18(12): e2300119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37594123

RESUMO

Poly(ethylene terephthalate) (PET) is one of the world's most widely used polyester plastics. Due to its chemical stability, PET is extremely difficult to hydrolyze in a natural environment. Recent discoveries in new polyester hydrolases and breakthroughs in enzyme engineering strategies have inspired enormous research on biorecycling of PET. This study summarizes our research efforts toward large-scale, efficient, and economical biodegradation of post-consumer waste PET, including PET hydrolase selection and optimization, high-yield enzyme production, and high-capacity enzymatic degradation of post-consumer waste PET. First, genes encoding PETase and MHETase from Ideonella sakaiensis and the ICCG variant of leaf-branch compost cutinase (LCCICCG ) were codon-optimized and expressed in Escherichia coli BL21(DE3) for high-yield production. To further lower the enzyme production cost, a pelB leader sequence was fused to LCCICCG so that the enzyme can be secreted into the medium to facilitate recovery. To help bind the enzyme on the hydrophobic surface of PET, a substrate-binding module in a polyhydroxyalkanoate depolymerase from Alcaligenes faecalis (PBM) was fused to the C-terminus of LCCICCG . The resulting four different LCCICCG variants (LCC, PelB-LCC, LCC-PBM, and PelB-LCC-PBM), together with PETase and MHETase, were compared for PET degradation efficiency. A fed-batch fermentation process was developed to produce the target enzymes up to 1.2 g L-1 . Finally, the best enzyme, PelB-LCC, was selected and used for the efficient degradation of 200 g L-1 recycled PET in a well-controlled, stirred-tank reactor. The results will help develop an economical and scalable biorecycling process toward a circular PET economy.


Assuntos
Ácidos Ftálicos , Polietilenotereftalatos , Polietilenotereftalatos/química , Hidrolases/química , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Etilenos
12.
Int J Biol Macromol ; 243: 125252, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295700

RESUMO

Ideonella sakaiensis is the bacterium that can survive by degrading polyethylene terephthalate (PET) plastic, and terephthalic acid (TPA) binding protein (IsTBP) is an essential periplasmic protein for uptake of TPA into the cytosol for complete degradation of PET. Here, we demonstrated that IsTBP has remarkably high specificity for TPA among 33 monophenolic compounds and two 1,6-dicarboxylic acids tested. Structural comparisons with 6-carboxylic acid binding protein (RpAdpC) and TBP from Comamonas sp. E6 (CsTphC) revealed the key structural features that contribute to high TPA specificity and affinity of IsTBP. We also elucidated the molecular mechanism underlying the conformational change upon TPA binding. In addition, we developed the IsTBP variant with enhanced TPA sensitivity, which can be expanded for the use of TBP as a biosensor for PET degradation.


Assuntos
Burkholderiales , Comamonas , Ácidos Ftálicos , Ácidos Ftálicos/química , Hidrolases/química
13.
Environ Sci Pollut Res Int ; 30(33): 80154-80161, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37294490

RESUMO

Understanding the distribution of di(2-ethylhexyl) phthalate (DEHP) is necessary for future risk evaluation of DEHP in agricultural soils. This study used 14C-labeled DEHP to examine its volatilization, mineralization, extractable residues, and non-extractable residues (NERs) incubated in Chinese typical red and black soil with/without Brassica chinensis L. Results showed that after incubated for 60 days, 46.3% and 95.4% of DEHP were mineralized or transformed into NERs in red and black soil, respectively. The distribution of DEHP in humic substances as NER descended in order: humin > fulvic acids > humic acids. DEHP in black soil was more bioavailable, with 6.8% of initial applied radioactivity left as extractable residues at the end of incubation when compared with red soil (54.5%). Planting restrained the mineralization of DEHP by 18.5% and promoted the extractable residues of DEHP by 1.5% for black soil, but no such restrain was observed in red soil. These findings provide valuable information for understanding the distribution of DEHP in different soils and develop the understanding for the risk assessments of PAEs in typical soils.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Poluentes do Solo , Solo/química , Poluentes do Solo/análise , Ácidos Ftálicos/química
14.
J Chromatogr A ; 1703: 464101, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37271083

RESUMO

In order to better identify the hazards of pollutants, developing the analytical methods that can sensitively detect and precisely monitor the content of trace pollutants has been the constant pursuit. In this paper, a new solid phase microextraction coating-ionic liquid/metal organic framework (IL/MOF) was obtained through the IL-induced strategy and used for the solid phase microextraction (SPME) process. IL was introduced into metal-organic framework (MOF) cage based on the anion of ionic liquid could interact strongly with the zirconium nodes of UiO-66-NH2. The introduction of IL not only increased the stability of composite, the hydrophobicity of IL also changed the environment of MOF channel, providing the hydrophobic effect to the targets. The confinement effect of IL effectively improved the extraction performance of parent MOF and the extraction performance of synthesized IL/UiO-66-NH2 for phthalates (PAEs) were 1.3-3.0 times that of parent UiO-66-NH2. Thanks to the strong interaction force (hydrogen bonding interaction, π-π stacking, hydrophobic interaction force), the IL/UiO-66-NH2-coated fiber coupled with gas chromatography-mass spectrometer showed a wide linear ranges (1-5000 ng L-1) with good correlation (R2, 0.9855-0.9987), lower detection limit (0.2-0.4 ng L-1) and satisfactory recoveries (95.3-119.3%) for PAEs. This article is dedicated to provide another way to improve the extraction performance of material.


Assuntos
Poluentes Ambientais , Líquidos Iônicos , Estruturas Metalorgânicas , Compostos Organometálicos , Ácidos Ftálicos , Estruturas Metalorgânicas/química , Ácidos Ftálicos/química , Microextração em Fase Sólida/métodos
15.
Chemosphere ; 328: 138578, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37023900

RESUMO

As a kind of compounds abused in industry productions, phthalic acid esters (PAEs) cause serious problems in natural environment. PAEs pollution has penetrated into environmental media and human food chain. This review consolidates the updated information to assess the occurrence and distribution of PAEs in each transmission section. It is found that micrograms per kilogram of PAEs are exposed to humans through daily diets. After entering the human body, PAEs often undergo the metabolic process of hydrolysis to monoesters phthalates and conjugation process. Unfortunately, in the process of systemic circulation, PAEs will interact with biological macromolecules in vivo under the action of non-covalent binding, which is also the essence of biological toxicity. The interactions usually operate in the following pathways: (a) competitive binding; (b) functional interference; and (c) abnormal signal transduction. While the non-covalent binding forces mainly contain hydrophobic interaction, hydrogen bond, electrostatic interaction, and π interaction. As a typical endocrine disruptor, the health risks of PAEs often start with endocrine disorder, further leading to metabolic disruption, reproductive disorders, and nerve injury. Besides, genotoxicity and carcinogenicity are also attributed to the interaction between PAEs and genetic materials. This review also pointed out that the molecular mechanism study on biological toxicity of PAEs are deficient. Future toxicological research should pay more attention to the intermolecular interactions. This will be beneficial for evaluating and predicting the biological toxicity of pollutants at molecular scale.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Humanos , Ácidos Ftálicos/química , Poluentes Ambientais/toxicidade , Poluentes Ambientais/química , Meio Ambiente , Saúde Ambiental , Ésteres/metabolismo , China , Dibutilftalato
16.
Anal Methods ; 15(16): 1985-1997, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37018054

RESUMO

Phthalic acid esters (PAEs) are a group of organic compounds that show vulnerability effects in different stages of human development. In this work, two sensitive and efficient impedimetric biosensors (IBs) were introduced and their interactions with four PAEs, namely dibutyl phthalate (DBP), dimethyl phthalate (DMP), di(2-ethylhexyl) phthalate (DEHP), and dicyclohexyl phthalate (DCHP), in aqueous solutions with these biosensors were separately investigated via electrochemical impedance spectroscopy (EIS). The surface of a copper electrode was modified by azolla fern dried powder (AZ) and magnetite-modified azolla nanocomposites (MAZ NCs) to form an azolla-based impedimetric biosensor (AZIB) and magnetite azolla nanocomposite-based impedimetric nanobiosensor (MAZIB), respectively. Determinations of PAEs with the designed biosensors were conducted based on their blocking effect on the biosensor surface to ferrous ions oxidation. After each impedimetric measurement, the electrode surface was covered again with the modifier. Nyquist plots were obtained and indicated that the charge-transfer resistance (RCT) values of the bare electrode, AZIB, and MAZIB without injection of PAEs were 468.8, 438.7, and 285.1 kΩ, respectively. After the separate injection of DBP, DMP, DEHP, and DCHP (3 µg L-1) on the surface of AZIB and MAZIB, RCT values were obtained as 563.9, 588.5, 548.7, and 570.1 kΩ for AZIB and 878.2, 1219.2, 754.3, and 814.7 kΩ for MAZIB, respectively. It was observed that the PAE blockers with a smaller structure provided better point-by-point coverage of the surface, which led to a bigger shift in RCT. The linear relationship between the EIS responses and each PAE concentration was investigated in the range of 0.1-1000 µg L-1. The limit of detection (LOD) and limit of quantification (LOQ) values were obtained in the ranges of 0.003-0.005 µg L-1 and 0.010-0.016 µg L-1 for AZIB and 0.008-0.009 µg L-1 and 0.027-0.031 µg L-1 for MAZIB, respectively. The results showed that these biosensors can be used to determine PAEs in real aqueous samples with good relative recoveries ranging from 93.0-97.7% (RSD < 2.58%) for AZIB and 93.3-99.3% (RSD < 2.45%) for MAZIB. The results confirmed that these impedimetric biosensors offer high sensitivity and performance for the determination of trace PAEs in aqueous samples.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Óxido Ferroso-Férrico , Ésteres/química , Ácidos Ftálicos/química , Dibutilftalato
17.
Mar Environ Res ; 188: 105973, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062112

RESUMO

Plastic litter might contain phthalates that can be transferred to marine environment or can be introduced into the marine food chain. Phthalic acid is the final product of phthalate decomposition in marine organisms. Here we used NMR spectroscopy to determine and quantify phthalic acid and dimethyl phthalate in fish muscles. Spike-and-recovery experiments were carried out to confirm assignment of phthalates resonance signals in NMR spectra and to evaluate the method specificity, accuracy, and linearity. The LOQ and LOD of the rapid 1H NMR experiment with a standard setting were respectively 23.0 and 8.0 mg of phthalic acid in kg of fish muscles. Phthalic acid was detected in 13 out of 113 Atlantic cod and none in farmed Atlantic salmon from Norwegian sea.


Assuntos
Gadus morhua , Ácidos Ftálicos , Animais , Ácidos Ftálicos/química , Plásticos , Músculos , Espectroscopia de Ressonância Magnética
18.
Chem Biodivers ; 20(4): e202201167, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36912724

RESUMO

In this study, three new axially disubstituted silicon phthalocyanines (SiPc1-3) and their quaternized phthalocyanine derivatives (QSiPc1-3) were prepared and characterized. The biological properties (antioxidant, antimicrobial, antibiofilm, and microbial cell viability activities) of the water-soluble silicon phthalocyanines were examined, as well. A 1 % DMSO diluted with pure water was used as a solvent in biological activity studies. All the compounds exhibited high antioxidant activity. They displayed efficient antimicrobial and antimicrobial photodynamic therapeutic properties against various microorganisms, especially Gram (+) bacteria. Additionally, they demonstrated high antibiofilm activities against S. aureus and P. aeruginosa. In addition, 100 % bacterial reduction was obtained for all the studied phthalocyanines against E. coli viable cells. Besides, the DNA cleavage and binding features of compounds (QSiPc1-3) were studied using pBR322 DNA and CT-DNA, respectively. Furthermore, the human topoisomerase I enzyme inhibition activities of compounds QSiPc1-3 were studied. Anticancer properties of the water-soluble compounds were investigated using cell proliferation MTT assay. They exhibited anticarcinogenic activity against the human colon cancer cell line (DLD-1). Compounds QSiPc1 and QSiPc3 displayed a high anticarcinogenic effect on the DLD-1 cell line. The obtained results indicated that all the studied compounds may be effective biological agents and anticancer drugs after further investigations.


Assuntos
Anti-Infecciosos , Antineoplásicos , Compostos de Organossilício , Staphylococcus aureus , Humanos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , DNA/química , Escherichia coli/efeitos dos fármacos , Ligantes , Staphylococcus aureus/efeitos dos fármacos , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia
19.
ChemSusChem ; 16(8): e202202277, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36811288

RESUMO

Enzyme-based depolymerization is a viable approach for recycling of poly(ethylene terephthalate) (PET). PETase from Ideonella sakaiensis (IsPETase) is capable of PET hydrolysis under mild conditions but suffers from concentration-dependent inhibition. In this study, this inhibition is found to be dependent on incubation time, the solution conditions, and PET surface area. Furthermore, this inhibition is evident in other mesophilic PET-degrading enzymes to varying degrees, independent of the level of PET depolymerization activity. The inhibition has no clear structural basis, but moderately thermostable IsPETase variants exhibit reduced inhibition, and the property is completely absent in the highly thermostable HotPETase, previously engineered by directed evolution, which simulations suggest results from reduced flexibility around the active site. This work highlights a limitation in applying natural mesophilic hydrolases for PET hydrolysis and reveals an unexpected positive outcome of engineering these enzymes for enhanced thermostability.


Assuntos
Ácidos Ftálicos , Polietilenotereftalatos , Polietilenotereftalatos/química , Hidrolases , Ácidos Ftálicos/química , Etilenos
20.
Environ Sci Pollut Res Int ; 30(16): 47544-47560, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746855

RESUMO

Phthalates are a group of neurotoxicants with cognitive-disrupting potentials. Given the structural diversity of phthalates, the corresponding neurotoxicity is dramatically altered. To identify the potential contributions of different phthalates on the process of cognitive impairment, data of 836 elders from the NHANES 2011-2014 cycles were used. Survey-weighted logistic regression and principal component analysis-weighted quantile sum regression (PCA-WQSR) models were applied to estimate the independent and combined associations of 11 urinary phthalate metabolites with cognitive deficit (assessed by 4 tests: Immediate Recall (IR), Delayed Recall (DR), Animal Fluency (AF), and Digit Symbol Substitution Test (DSST)) and to identify the potential phthalate with high weight. Laboratory mice were further used to examine the effect of phthalates on cognitive function and to explore the potential mechanisms. In logistic regression models, MBzP was the only metabolite positively correlated with four tests, with ORs of 2.53 (quartile 3 (Q3)), 2.26 (Q3), 2.89 (Q4) and 2.45 (Q2), 2.82 (Q4) for IR, DR, AF, and DSST respectively. In PCA-WQSR co-exposure models, low-molecular-weight (LMW) phthalates were the only PC positively linked to DSST deficit (OR: 1.93), which was further validated in WQSR analysis (WQS OR7-phthalates: 1.56 and WQS OR8-phthalates: 1.55); consistent with the results of logistic regression, MBzP was the dominant phthalate. In mice, butyl benzyl phthalate (BBP), the parent phthalate of MBzP, dose-dependently reduced cognitive function and disrupted hippocampal neurons. Additionally, the hippocampal transcriptome analysis identified 431 differential expression genes, among which most were involved in inhibiting the neuroactive ligand-receptor interaction pathway and activating the cytokine-cytokine receptor interaction pathway. Our study indicates the critical role of BBP in the association of phthalates and cognitive deficits among elderly individuals, which might be speculated that BBP could disrupt hippocampal neurons, activate neuroinflammation, and inhibit neuroactive receptors. Our findings provide new insight into the cognitive-disrupting potential of BBP.


Assuntos
Disfunção Cognitiva , Poluentes Ambientais , Ácidos Ftálicos , Animais , Camundongos , Inquéritos Nutricionais , Poluentes Ambientais/toxicidade , Ácidos Ftálicos/química , Disfunção Cognitiva/induzido quimicamente , Exposição Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA